Package tulip :: Package transys :: Module automata
[frames] | no frames]

Module automata

Automata Module

Classes
  FiniteStateAutomaton
Generic automaton.
  FiniteWordAutomaton
Finite-word finite-state automaton.
  OmegaAutomaton
  BuchiAutomaton
  BA
Alias to BuchiAutomaton.
  RabinPairs
Acceptance pairs for Rabin automaton.
  RabinAutomaton
Rabin automaton.
  DRA
Deterministic Rabin Automaton.
  StreettAutomaton
Omega-automaton with Streett acceptance condition.
  MullerAutomaton
Omega-automaton with Muller acceptance condition.
  ParityAutomaton
Omega-automaton with Parity acceptance condition.
  ParityGame
GameGraph equipped with coloring.
Functions
 
nfa2dfa()
Determinize NFA using Rabin-Scott subset construction.
 
dfa2nfa(dfa)
Copy DFA to an NFA, so remove determinism restriction.
 
ba2dra()
Buchi to Deterministic Rabin Automaton converter.
 
ba2ltl()
Buchi Automaton to Linear Temporal Logic formula converter.
BuchiAutomaton
tuple2ba(S, S0, Sa, Sigma_or_AP, trans, name='ba', prepend_str=None, atomic_proposition_based=True)
Create a Buchi Automaton from a tuple of fields.
Variables
  logger = logging.getLogger(__name__)
  __package__ = None
hash(x)
Function Details

nfa2dfa()

 

Determinize NFA using Rabin-Scott subset construction.

UNDER DEVELOPMENT; function signature may change without notice. Calling will result in NotImplementedError.

ba2dra()

 

Buchi to Deterministic Rabin Automaton converter.

UNDER DEVELOPMENT; function signature may change without notice. Calling will result in NotImplementedError.

ba2ltl()

 

Buchi Automaton to Linear Temporal Logic formula converter.

UNDER DEVELOPMENT; function signature may change without notice. Calling will result in NotImplementedError.

tuple2ba(S, S0, Sa, Sigma_or_AP, trans, name='ba', prepend_str=None, atomic_proposition_based=True)

 

Create a Buchi Automaton from a tuple of fields.

defines Buchi Automaton by a tuple (S, S0, Sa, \Sigma, trans) (maybe replacing \Sigma by AP since it is an AP-based BA ?)

See Also

tuple2fts

Parameters:
  • S - set of states
  • S0 - set of initial states, must be \subset S
  • Sa - set of accepting states
  • Sigma_or_AP - Sigma = alphabet
  • trans - transition relation, represented by list of triples:
           [(from_state, to_state, guard), ...]
    

    where guard \in \Sigma.

  • name (str) - used for file export
Returns: BuchiAutomaton