Algorithms related to discretization of continuous dynamics.
AbstractPwa
|
discretize(part,
ssys,
N=10,
min_cell_volume=0.1,
closed_loop=True,
conservative=False,
max_num_poly=5,
use_all_horizon=False,
trans_length=1,
remove_trans=False,
abs_tol=1e-07,
plotit=False,
save_img=False,
cont_props=None,
plot_every=1)
Refine the partition and establish transitions based on reachability
analysis. |
|
|
|
reachable_within(trans_length,
adj_k,
adj)
Find cells reachable within trans_length hops. |
|
|
|
sym_adj_change(IJ,
adj_k,
transitions,
i) |
|
|
|
|
|
multiproc_discretize(q,
mode,
ppp,
cont_dyn,
disc_params) |
|
|
|
multiproc_get_transitions(q,
absys,
mode,
ssys,
params) |
|
|
|
multiproc_discretize_switched(ppp,
hybrid_sys,
disc_params=None,
plot=False,
show_ts=False,
only_adjacent=True)
Parallel implementation of discretize_switched. |
|
|
AbstractSwitched
|
discretize_switched(ppp,
hybrid_sys,
disc_params=None,
plot=False,
show_ts=False,
only_adjacent=True)
Abstract switched dynamics over given partition. |
|
|
|
plot_mode_partitions(swab,
show_ts,
only_adjacent)
Save each mode's partition and final merged partition. |
|
|
|
|
|
merge_abstractions(merged_abstr,
trans,
abstr,
modes,
mode_nums)
Construct merged transitions. |
|
|
scipy.sparse.lil_matrix
|
get_transitions(abstract_sys,
mode,
ssys,
N=10,
closed_loop=True,
trans_length=1)
Find which transitions are feasible in given mode. |
|
|
|
|
|
|
|
merge_partition_pair(old_regions,
ab2,
cur_mode,
prev_modes,
old_parents,
old_ap_labeling)
Merge an Abstraction with the current partition iterate. |
|
|